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ABSTRACT 

Linearized flow assumptions  and  the  conservation  equations of mass,  momentum, 
and energy  are  used  to  estimate  the  flow  field  at all distances  from a body which pro- 
duces  an N wave pressure  trace.  The  analytical  results  show good agreement  with ex- 
perimental  results  for  cones  and  axisymmetric  bodies  with  convex  profiles.  The 
influence of the  shock  wave  entropy  increase  on  the  attenuation of the  shock  wave  static 
pressure rise with  distance  from  the body is illustrated. 
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AN  ESTIMATE OF THE SUPERSONIC FLOW FIELD ABOUT  AN 

AXISYMMETRIC  BODY  WITH  AN N WAVE  PRESSURE TRACE 

by Roger  W.  Luidens 

Lewis Research  Center 

SUMMARY 

At  the  present  time,  the  analysis of the  sonic boom from  overflying  aircraft is im- 
portant  because of the  efforts  to  reduce  this  disturbance by the  proper  selection of the 
airplane  configuration  and/or  flight  conditions.  The  analysis of sonic boom depends  on 
the  more  fundamental  and  limited  problem of describing  the  flow  field  about a body in a 
uniform  flow,  which is the  subject of this  report. 

Linearized flow assumptions  and  the  conservation  equations of mass,  momentum, 
and  energy  are  used  to  estimate  the flow field at all distances  from  an  axisymmetric 
body of zero angle of attack  that  yields  an N wave pressure  trace.  The  analytical  results 
were shown to  be  in good agreement with experimental  results  for  cones  and  axisym- 
metric  bodies with a convex  profile. 

The  present  analysis  shows  explicitly how the  entropy  increase  across  the  initial 
shock  wave  contributes  to  the  attenuation of the  initial  static  pressure  rise  across  the 
shock  with  increasing  distance  from  the body. This  effect  occurs only  implicitly  with 
Fredrichs'  hypothesis  and  in  Whitham's far field  analysis which assume  adjacent  isen- 
tropic  flows  with  interposed  shocks. 

INTRODUCTION 

At the  present  time,  the  analysis of the  sonic boom from  an  overflying  aircraft is 
important  because of efforts  to  reduce  this  disturbance  from  the future  supersonic 
transports by the  design of the  vehicle  shape  and/or by the  selection of flight  conditions. 
The  analysis of the sonic boom depends  on  the  more  basic  and  more  limited  problem of 
describing  the flow  field  about  an  axisymmetric body at zero  angle of attack  in a uniform 
flow  field,  and  that is the  subject of this report. 
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All the analyses cited in the  following  discussion  deal  with  small  disturbances  in a 
uniform  supersonic stream. The earliest analyses of flow  about  slender  shapes  (Hayes, 
1947  (ref. 1) and  Graham, et al., 1952 (summarized  in  ref. 2)) were  concerned  primarily 
with  the  lift  and  drag  on  these  shapes. In these  analyses,  the  assumption of irrotational 
and/or  isentropic  linearized  flow  was  made.  These  analyses led to the area rules  that 
evolved  conceptually  from  considerations of the  disturbances  in  the flow far from  the 
body, Whitcomb, 1952 and  1953  (reported  in  refs.  3  and 4). While far field  disturbances 
are predicated by the  assumed  isentropic flow,  the  disturbances of primary  concern  were 
those  on  the body which  give rise to its Lift and drag; and  inaccuracies  in the predictions 
of f a r  field  disturbances  were of little consequence.  This  branch of analysis  culminated 
in  electronic  computer  programs,  such as the one described  in  reference 5, for  calcu- 
lating  the  pressure  forces  on  an  airplane. 

Unlike estimating  the  forces on a body, estimations of sonic boom require  accurate 
determination of the  disturbances far from  the body.  The first step in  this  direction 
was  taken by Fredrichs'  reference 6, for  the  two-dimensional  supersonic  flow  about  an 
airfoil. He hypothesized  that a separate  isentropic  flow  solution  for  the  flow  over  the 
wing itself could  be  patched  into  the  isentropic free s t ream flow by interposing  shocks 
attached  to  the wing leading  and  trailing  edges.  The  simultaneous  assumption of isen- 
tropic flow  and  shock  waves  was  admittedly  conflicting. 

Lighthill  (ref. 7) examines  Fredrichs'  hypothesis  in  detail.  For  the  shock  shape 
predicted by Fredrichs,  he  found that  the  momentum  loss  in  the flow associated with  the 
entropy rise across  the shock  waves  plus the momentum  change  in  wave  form  between 
the  leading  and  trailing  shocks  equaled  the  force  on  the body fo r  all distances  from  the 
body. He concluded  that  Fredrichs'  hypothesis  was  "watertight. '' 

The  hypothesis of Fredrichs,  that of patching  separate  isentropic  solutions by 
interposed  shocks,  was  applied  to the three-dimensional  supersonic  flow  about  an axi- 
symmetric body by Whitham first in  1950 and  updated in reference 8. Whitham's  result 
is not in  closed-form  and is most  conveniently  applied  using  electronic  computers as 
discussed  in  reference 9 for  example.  The  accuracy of Whitham's  analysis is supported 
by experimental  results,  reference 10 for  example.  References 11 and 12 are reviews 
of sonic boom analytical  and  experimental  research  and  contain  many  more  references. 

The  present  analysis  differs  from  the  preceding  ones  in  the  following  ways: 
(1) The  assumption of nonisentropic  flow is made  from the beginning. 
(2) The  analysis is made  based  on the conservation  equations of mass,  momentum, 

and  energy,  rather  than  Fredrichs'  hypothesis. 
(3) For  a body which  produces  an N wave pressure  t race,  the  present  analysis 

yields  an  estimation of the  flow  field at all distances  from  the body. The  analysis is 
approximately  correct  for  general  slender  bodies at large  distances.  The  approach of 
the  present  analysis  should  contribute  to  the  understanding of shock  wave  attenuation 
and  the  closed  form of the  results  will be a convenience for  .estimation  purposes. 
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Closed  form  relations are developed for the  general  flow  field  about a body including 
the  shock  shape  and initial static pressure rise. The  analytical  results are compared 
with  experimental  results, and  typical  flow  field  calculations are illustrated. 

SYMBOLS 

A 

A' 

AX 

a 

B 

C 
DP 

cP 

C 

DP 

E 

KC 

KS 

I 

I '  

M 

P 

P 

AP 

U 

cross-sectional  area of body normal  to  the  x-direction p = p m  

maximum cross  sectional  area of body 

general  projected  area  normal  to the x-direction at station  x 

speed of sound 

pressure-drag  coefficient of forebody  based on cross-sectional  area at p = p, 

pressure  coefficient,  (p - p,)/(l/2)ypM 2 

JI" u2d/[mu2d( 

P= P, 

drag of forebody  to  station  where 1-1 = & 

L 
I 

body shape  factor,  C / A / 1 2 )  
DP 

length of forebody  from  nose to station  where p = p, 

length of forebody  from  nose to maximum cross  section 

Mach number 

total  pressure 

static  pressure 

static  pressure rise, above  ambient 

free-stream  velocity  in  x-direction 
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velocity  for isentropic expansion  to zero   p ressure  

perturbation  velocities  in x- and  r-direction,  respectively 

cylindrical  coordinates (see fig. 1) 

ratio of specific  heats 

5m 
angle  between  local  Mach  wave or  shock wave  and free-stream  direction 

angle  between  local Mach wave  and  local-stream  direction 

angle  between  free-stream  Mach  wave  and  free-stream  direction 

coordinate  in  minus  x-direction  measured  from  reference Mach wave 

minus 1 , see fig. 3 

originating  from  position on the body where 1-1 = pLoo 

sound  wave  length,  length  between  initial  static  pressure rise and  position  where 
I-1 = EL, 

air density 

Subscripts 

e 

m 

max 

P 
r 

t 

W 

X 

og 

1 

2 

entropy  component 

behind  leading  shock o r  at body nose 

maximum  value 

body pressure  drag 

in  r-direction 

body trailing  edge o r  trailing  shock 

sound  wave  component 

in  x-direction, or at station x 

free-stream  value 

radius of body 

outer  radius of control  surface 
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ANALYSIS 

The Momentum  Equation  and Basic Assumptions 

The  present  analysis is based on the momentum  theorem  which states, for  steady 
flow, that the  time rate of change of momentum  through the surfaces at a fixed  control 
volume is equal to the  net  force  acting on  the  fluid.  (ref. 13) .  The  coordinate  system  used 
for the  analysis is shown in  figure 1. It is a conventional  cylindrical x, r, 8 coordinate 
system  with the free-stream  velocity U in the  x-direction;  u  and  v are perturbation 
velocities  in the x- and  r-direction,  respectively.  The  surfaces of the control  volume 
to which  the  momentum theorem  will be applied are those of the  circumscribing  cylinder 
shown  in  figure 1. 

Vertical 

Figure 1. - Coordinate  system  and  control  volume. 

The  cylinder is selected so that the sides are  parallel  to the free-stream  direction, 
the  upstream  end is in the free-stream  where  the static pressure is p,, and  the down- 
stream  end is located  sufficiently far downstream so  the static pressure has again 
returned  to p,. The  integral of the pressure  forces  on the control  surface 

s control (P - P,)dAx 
surface 

is thus  zero.  The only pressure  force on the fluid  and  in  the  x-direction is the integral 
of the pressures  on the body 

I 
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which is the body pressure  drag,  D  Friction  forces are not considered  in  this  analy- 
sis, so the body pressure drag  is the  only force  acting on  the  fluid. 

P' 

The rate of change of momentum in  the  x-direction is the mass  flow rate times  the 
change  in  velocity  in  the  x-direction.  The body causing  the  momentum  change is taken 
as axisymmetric (and at zero  lift)  and  the  fluid  properties are taken as uniform (and 
hence  axisymmetric), so  the  problem is axisymmetric.  The  mass  flux  through  an 

' elemental  cylinder of the  side of the  control  surface  due  to  the  velocity  component  nor- 
mal  to  that  surface is 2ar2pv d x ,  and  the  velocity  component  in  the  x-direction of that 
fluid  element is (U + u) so that  the  velocity  change  from  the  free-stream  velocity U is 
u.  A mass  flux  through  the sides of the control  cylinder exists only  between tm and 
5,. At  other  regions the streamlines  and  the  sides of the  control  cylinder  coincide. 

Through  the  trailing  end of the  control  cylinder,  the  mass  flux  per  cylindrical 
element is 2nrp(U + u)dr,  and  the  change  in  velocity  from  the  free-stream  value  in the 
x-direction is u. 

The  present  analysis  considers only small  changes in velocity  from  the  free-stream 
value, so that  in  estimating the mass'flux  through  the  walls of the control  cylinder, 
changes  in  the  fluid  density  p  may be neglected,  and  u  may be neglected  compared  with 
with U. Also,  only a forebody, as indicated by the  solid  lines  in  figure 1, is considered 
to  permit only the  leading  shock  from  the body. The  forebody  generates  the  forepart of 
the N wave pressure trace on  the  side of the control  cylinder.  The  forebody is defined 
to  terminate  where  the wave  angle  leaving  the body is equal  to  the free s t ream Mach wave 
angle. Downstream of this wave  the  flow is assumed  to  return to the x axis and  the free  
stream  direction  isentropically. (An alternative  assumption  that  the  forebody  and  after- 
body generate  the  same  pressure  drag  and  shock  losses would yield  the  same  end  result. ) 
Then,  equating  the  net  force  on  the  fluid (the pressure  drag on  the body D ) to the rate 
of change of momentum  yields 

P 

P 

The  pressure  drag on  the body is seen  to give rise to two drag components  in  the  flow 
field.  The first term on  the  right-hand  side of equation (la) will be called  the "sound 
wave  component",  because it is the  component  that carries  the  sonic boom,  and 
designated Dw. The  second  component  will be called the "entropy  component",  and 
designated De, because it will  be  calculated  from  the  increase  in  entropy (loss in  total 
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pressure)  across  the  shock  waves  in  the  system. (The friction  drag would also  appear 
as a defect  in  momentum  in  the  downstream  plane  but, as mentioned  before,  this is not 
considered  here.  Also,  to  help  clarify  the  terminology  being  used,  note  that  the sum of 
the two terms  on  the  right-hand  side of 'equation  (la) is generally  referred  to as the  shock 
wave drag  or  simply  the body wave  drag. ) The  selection of the  cylindrical  control  surface 
shown  in figure 1 is convenient  because  the  sound  wave  drag  and  entropy  drag  cause 
disturbances  in  clearly  distinct  regions;  that is, respectively, on the sides  and  end of 
the  control  cylinder. 

In abbreviated  form,  equation (la) can  be  written as 

D = D w +  De P 

that is, the sum of the  sound  wave  and  entropy  drags  must  equal  the  pressure  drag on the 
body. One part of the problem  dealt  with  in  this  paper is how the  sound wave drag and 
entropy  drag  components are divided as a function of the  distance r2 from  the body. 
Qualitatively,  for  the  cylindrical  wall of the  control  surface  very  near  the body, r2 
small ,  the drag  in the flow is predominantly  in  the  form of sound  wave drag. A s  the 
distance of the  cylindrical  wall  from  the body increases, r2 increasing,  more of the 
drag  must  appear as entropy  drag  due  to  the  total  pressure  losses  across  the  leading 
shock  wave.  As r2 approaches  infinity, it is expected  that all of the drag  appears as 
entropy  drag  and  the  sound wave drag  has decayed  to  zero. 

Also,  for  an  axisymmetric body,  attenuation of the  initial  pressure  rise  in  the sound 
wave  with increasing  distance  from a body is associated  with  three  effects, all of which 
are interrelated: 

(1) The  cylindrical  attenuation  that would exist even if the  leading  and  trailing  waves 
were  parallel  and  isentropic. 

(2) The  attenuation  due  to a divergence of the  leading  shock  and  the  downstream 
Mach  waves 

(3) The  attenuation  in  the  sound  wave  drag due to a conversion of some of the body 
pressure  drag  to  entropy  drag. 

The  sound  wave  component of the  drag  will be analyzed by applying  the  linear  theory 
relation  between  the  perturbation  velocities u and  v  along  any  given stream tube, 
that is 

where 

p = ph" - 1 



The  linearized  relation  between static pressure change from  the  free-stream  value 
Ap E p - p, and the  velocity  change u is 

Ap = puU (3) 

A discussion of linearized  theory  may  be found in  references 1, 2, 8, and  13 for 
examples. 

along a s t ream tube remains  constant; (2) the  "available  energy", as measured by the 
stream  entropy or total pressure,  is a characteristic of each  individual  stream  tube; 
and (3) the  flow  has  returned  to the free  s t ream  s ta t ic   pressure at the  downstream 
surface of the  control  volume.  The  velocity  change u at the  trailing  end of the  control 
cylinder  then  depends  on  the  total  pressure  losses  incurred  upstream  along a given 
s t ream tube. 

The  entropy  component of the drag will be analyzed knowing that: (1) the  total  energy 

The  problem has now been set up in  general  terms.  To  determine  the  initial  shock 
pressure  r ise  and  shock  shape,  separate  consideration is next  given  to  the  sound  wave 
and  entropy  drags  and  their  relation to the  leading  shock  shape. 

Sound Wave Drag 

This  part of the analysis  will  lead  to  relations  between  the  sound wave drag and  the 
s ta t ic   pressure rise across  the  shock  which,  in  turn, is a function of the  leading  shock 
shape. 

the  sound wave drag  may be written  from  equations (la) and (lb) as follows 
Relation of sound  wave drag  to  shock  static  pressure rise. - Using  equation  (2a), 

Conceptually, only the  fore  part of the body is being  considered.  To  evaluate  the 
integral  in  equation (4), it is assumed  that  the  pressure  signature of the  sound  wave at 
all radii r is the fore part of an N wave, that is, that Ap/p varies  linearly with 5 
as shown in  figure 2(a). This  agrees with  the analysis of reference 8 and  with  the 
experimental results of reference  10, both for  the f a r  field. This,  strictly  speaking, 
limits  the  analysis  to  bodies  that  produce a pressure  trace  that  is the fore part of an 
N wave at all distances. 

8 



E """ 

Present 
analysis 

(a)  Assumed  N-wave  static  pressure  signature. * "-" E '. ! 

-.I 

(b) Perturbation  velocity uw. 

(c)  Perturbation  velocity  squared u;. 

Figure 2. - Assumed  disturbances in flow  field 
on sides of control  cylinder. 

Then, by equation (3), u  must  also  vary  linearly  with 5, as shown in figure 2(b). 
As shown in  figure 2(c), the  variation of u2  with 5 has a parabolic  shape.  From  the 
geometry of figure  2 (c), the  integral  in  equation (4) can  then  be  written  in  terms of urn 2 

as 

J(.im u2 d< = c L m u 2  d( = - 3 1 2  CU m m  6 
II= II, 

where  the  numerical  value of c is approximately  unity  and is assumed so later. With 
the  assumption of the  form of u, the  maximum  over-pressure in the signature Apm 
in  figure  2(a),  depends  only  on  the  pressure  drag of the body.  Using the definition of 
the  drag  coefficient,  the sound  wave drag may also  be  written as 

1 2 Dw D w = - C  pU A -  
2 DP DP 

9 



With  equations (5) and (6) substituted  in  equation (4), it may  be  solved  for urn. The 
static pressure rise at leading  shock (the front of the sound  wave)  may  then  be  obtained 
from equation (3). 

/A " Dw 

- KcU 
P 

P -  - 
2 2  

where 

Because  the  free-stream flow field Mach number  will  usually be specified, it is con- 
venient  to  write  the  above  result  in  terms of the  Mach  number, M = U/a. This is most 
conveniently done by recalling  that  the  dynamic  pressure q can be written  in  either of 
the  following  forms 

q = - p u  = - rpMa 1 2 1  
2 2 

Then  using  equation (8), equation (7a) may  be  written  in  terms of Mach number and 
ambient  pressure as 

For the  present  study, if Apm, the  initial  static pressure r i se   in  the  sound  wave, 
and  the  wave  length 5, are known as a function of r2/Z, the  problem is essentially 
solved. Unknown in  equation (9) a r e  tm/2 and Dw/D both of which are a function of 
r2/Z and these  will be evaluated.  The  required  functions  depend on the  shape of the 
leading  shock  which  in turn  depends on Apm/p and this is discussed next. 

P 
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Relation of shock static pressure rise to  shock  shape. - The air flowing  around  the 
slender body is first compressed as the body cross  sectional area increases and  then 
expands as the  cross-sectional area approaches a cylindrical  section. At  some  point 
along  the  body, it is hypothesized  that a "reference Mach  wave",  having an angle  the 
same as the  free-stream Mach  wave, pm, leaves the  body and  extends  outward  (pre- 
sumably as a straight  line)  to  infinity; see figure 3. The Mach number  and  flow direc- 
tion on the body where  the  reference Mach  wave originates are not necessarily the free- 
stream  values.  The "forebody" referred to  in  the  previous  section is the body ahead of 
the  point  on  the  body from which  the  "reference Mach wave" leaves.  The  overpressure 
due  to  the  forebody is, for the  most  part,  positive as shown in  figure 2(a), and this is 
the  region of flow discussed  in  the  present  analysis.  The  leading  shock  shape is defined 
by  the  distance km that it lies ahead of the reference Mach wave.  This  distance  consists 
of two parts,  the  length of the  forebody, 1 ,  plus  the  remaining  distance b (see fig. 3). 
The  general  relation  for b may be written as 

Figure 3. - Geometry  for  shock  wave  displacement  analysis. 

s in  h- 1 

Figure 4. - Displacement of shock  wave  from  Mach  wave. 

11 



To integrate  equation  (lo),  the  shock intensity is assumed  to be  weak  consistent with 
linearized  theory so  that  the  deviation of the  shock  angle  from  the Mach angle, 
A p  5 p - pm, is small.  Then  from the geometry of figure 4, the  differential dC/dr 
may be written 

The  term  dp/(dpm/p)  may be  found by differentiating  equation (155) of reference 14 for 
the  relation  between p and  pm/p. 

dPm 4Y P - 
P 

Using equations ( l o ) ,   ( l l ) ,  and (12) and  the  difference  form Ap/p for  dp/p  consistent 
with equation (g), the  equation  for ,$ is 

m 

Equations (9) and (13) are a pair of equations  that are to be solved  for  the  pressure rise 

'Pm 
y ,  is taken as a constant.  The  terms, M, p, and  p a r e  specified  free-stream  airflow 
conditions  and  the terms Z , A, and Kc are specified body shape and aerodynamic 
characteristics.  The  remaining  terms Apm, ,$,, Dw/D are dependent  variables; 
r2 is considered  the  independent  variable.  Equations (9) and (13) can  be  combined  to 
eliminate  Apm/p by first  differentiating  equation (13), and this  gives  equation (14). 
In equation (14), the  variables  have  been  separated;  and  the  constants  in  equations (9) 
and (13) have  been  lumped  together. 

. In these  equations, a number of terms  are  constants.  The  ratio of specific  heats, 

P 
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where the constants  from  equation 9 are 

E = KcyM (7 
2 A  

and  from  equation (13) are 

P 

n 

In  equation (14a), the  sound  wave drag  fraction, Dw/D must  decrease with increasing 
distance  ratio, r2b, due to  the  cumulative  increase  in  entropy  related  to  the  increase in 
mass  flow  through  the  downstream  end of the  control  cylinder  with  increasing r2/2. 
The  sound  wave  length  ratio, 5 , / 2  also increases with  increasing r2/Z. A mathemati- 
cal  form for the  wave drag  fraction  consistent  with  these  observations  and  with  the  form 
of equation (14a); that is, Dw/D taken as a power of (tm/Z ) is P 

P' 

where  the  exponent 
relation  in  equation 

n is a positive  number yet to  be  determined.  Substituting  this 
(14a) and  carrying  out  the  integration  gives 

L 

Equation (16) describes  the  sound wave  length tm and,  hence,  the  leading  shock  shape 
in   terms of r2/Z and  the unknown exponent, n. 

These  results (eqs. (15) and (16)) may  be  substituted in equation (9) to  give  the 
initial  pressure rise in  the  sound  wave also in  terms of n as 



The  determination of a value  for  n  depends  on  the  analysis of the  entropy  drag  which is 
discussed  next. 

Entropy Drag 

This  discussion parallels that of the  wave  drag. 
Relation of entropy  drag  to  shock static pressure rise and  shape. - The  entropy  drag 

is most conveniently  discussed by forming  the  ratio of the  entropy  drag  to  the body 
pressure drag.  This  may be done  in drag  coefficient  form,  recalling  that,  in  general, 
CD = D/(1/2)pU A. From  the  term  for  the  entropy drag in  equation (l), the  second 
te rm on  the  right-hand  side, we can  write 

~. ~ . ~~ 

2 

l-. * . I  

To  evaluate  the  integral  in  this  equation, we need to know u/U as a function of r/Z . 
Equation (17) (with r2/Z = r/Z) gives Ap,/p as a function of r/Z , so if u/U can be 
evaluated  in  terms of Apm/p,  we will  have  the  required  relation.  The  conditions for 
evaluating u/U at the  downstream  end of the  control  cylinder  were stated ear l ier  and 
are reviewed  here: (1) the  total  energy  along  the  stream tube remains  constant; (2) the 
"available  energy" as measured by the stream  entropy or total  pressure, is a character-  
ist ic of each  individual  stream  tube; and (3) the  flow has  returned to  the free-stream 
pressure at the  downstream  end of the  control  surface. 

The  following a r e  the  mathematical  manipulations  required  to  obtain  the  desired 
relation  between u/U and Apm/p. Equation (71) of reference 14 is an  appropriate one 
relating  the  velocity of the  downstream  plane  to  the stream  total   pressure.  In  the 
terminology of this report ,  it is 

Uv is the  velocity  for  expansion  to  zero  pressure  and  depends only on  the  total  energy  in 
the  stream, which is a constant,  and not on  the  total  pressure, P. Thus, Uv is a con- 
stant.  The  static  pressure, p, while it has  undergone  an  excursion  from  the  free-stream 
value  between the leading  shock  and  the  trailing  wave  from  the  body, has returned  to  the 
free-stream value in the  vertical  plane  downstream of the body being  considered  here, 
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and is thus a constant at the  free-stream  value. P and U are then  the only variables. 
Equation (19) may be differentiated to yield (Note that dU = U.) 

2 2  M =- 
Y - 1  

so, equation (20) may  be  written 

This  gives the relation  between  the  velocity at the  downstream  end of the control  cylinder, 
and  the  total  pressure  loss, dP, along  the  streamline  upstream of the integration  plane. 

Equation (113) of reference 14 gives a series  relating the total  pressure  ratio  across 
a weak  shock  wave  to  the static pressure rise across  that shock. For a sufficiently 
weak  wave,  the first te rm of that series is an  adequate  approximation; it is 

where  station 00 is ahead of the shock,  and  station  m  after  the  shock.  Because this 
relation  holds  only  for p,/p, close  to  unity, it can be appropriately  written 

This relation  may be combined  with  equation (22) to give 
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This is the  sought  after  relation  between u/U and  the static pressure rise across  the 
leading  shock  wave. . The  integration of equation (18) can now be  carried  out by substi- 
tuting  equation (17) in  equation (X), and  equation (25) in equation (18). The  result for 
the  ratio of entropy  to body pressure  drag is 

D 

cn 

This is still in   terms of the unknown exponent n. 
Determination of shock  shape  exponent  n. - From  equation  (lb), which relates  the 

sound  wave  and  entropy  drags,  and  equation (15) for  the  assumed  algebraic  form  for  the 
entropy  drag,  we  can  write 

Summary of Equations 

The preceding resul ts  are summarized  here.  For  the  sound wave  flow field, 
equations (16), (17), (3), (2a), and (15), respectively  give 
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(;)wm = - P- U wm 

U 

-1 !?E=(+) 
DP 

For  the  entropy flow field,  equations (25) and (27), respectively,  give 

where Apm/p is given by equation (29) and 

Approximate  relations. - Equations (28) and (29) can  be  approximated  for the near 
and far field.  The  near  field is defined here as, when  the tm/Z can  be  approximated 
by  unity. This  eliminates  the  need  for  equation (28) and  simplies  equation (29). For 
this case, Apm is proportional  to (A/Z ) and  inversely  related to the square  root of 2 

r2/z - 
The f a r  field is defined here as, when in  the  equation (28), the  term unity can  be 

neglected  to a good approximation. In this  case,  equation (29) for the static  pressure 
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rise becomes 

Now  Apm is proportional  to  the  square  root of A/Z and  inversely  with r2/Z 
to  the 3/4 power.  Equation (35) is the  expression  usually  given  for  the far-field static 
pressure rise except  for  the  form of the first term. While  these  approximations  may be 
made,  the  present  analytical  expressions  are  sufficiently  simple  that  the  approximations 
a r e  not  needed. 

Application of the results. - In order to  apply  the  preceding  equations,  several  terms 
must be known; Ks, and  the  location on the body for  the  origin of the  reference  Mach 
wave. 

The  term Ks = C (A/Z) is in  general a function  of: Mach number, A/Z 2, and body 
DP 

profile  shape. Ks has been  evaluated for cones  using  the  information  in  Chart 6 of 
reference 14 and  the results are presented  in  figure 5. For a cone, Ks and +/x2 are 
constant  along  the  length of the body. This is not true  for  other  profile  shapes. An 
analysis  to  determine  the body profile  with minimum drag,  presented  in  Truitt, ref- 

Mach 
number 

\ 1.1 

\ 1.5 

. 5  

.OM .006.008 . 01 .02 .M .06 .08 . 2  ;i Body fineness  parameter, A112, and A'I1 

Figure 5. - Body shape  factors  for  cones. 
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ence 5, suggests  that  such a profile  has a Ks of 0.67  that of a cone  with the same 
A'/Z f2. In  applying  the results  to nonconical  shapes, A'/1 '2 is used  for A/Z . 2 

For  a body with a convex  profile, it can be estimated  analytically  that  the  reference 
free-stream Mach  wave leaves at about  0.862'. A similar value is suggested  for both a 
minimum drag profile  and  for  cones by the experimental  results of reference 10. Be- 
cause it is convenient  in  applying  the results to have  them  in  terms of the  length  to  the 
maximum  cross-sectional area, equations (28) and (29) are rewritten below for 
2 = 0.85 Z', and A / t 2  taken as A'/1 12.  

" 'Prn = 

P 
" (3 7) 

Also, at some  distance  from  the body, the  sound  wave  length, tm, is to a good approxi- 
mation  the  distance  between  the  initial static pressure rise and  the  position  where Ap = 0. 

DISCUSSION 
Here a comparison  with  experimental  results is given,  and  the results of typical 

flow  field  calculations are illustrated. 

Comparison  with  Experimental  Results 

Reference 10 gives  experimental  data  presented  in figure 6 for  the  pressure  field 
about a number of bodies of revolution, at Mach numbers of 1.26,  1.41,  and 2.01.  
The  bodies  used  for  comparison  with  the  analytical  results are given  in  table I. They 
yield  nearly half  N-wave shapes at the  distances  considered.  From  these  data,  the 
peak pressure rise, which is not always  the initial pressure rise for  the  conical  bodies, 
and  the  sound  wave  length  can  be  determined. 

Also presented  in  figure 6 for  comparison with experimental  results are the 
analytical resul ts  of equations (36) and (37). Figure 6(a) presents  the  dimensionless 
sound  wave  length, tm/Z', versus  the  dimensionless  distance  from  the body r2/Z'. The 
data for model 1 are very  nearly the same as those  for  model 7  and,  hence, not  shown. 
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number 

Model  (ref. 10) 
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(a) Sound-wave  length. 

Mach  Equation (37) 
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0 1.41 ---- 
A 2.01 --- 

IO 20 30 40  50 60 70 80 90 
Dimensionless  distance  from body, r2/1' 

(b) Peak pressure rise. 

Figure 6. - Comparison of analytical  and  experimental  results. 
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TABLE I. - BODY SHAPES 

I Body profile I Body fineness parameter I Model (ref. 10) 1 

Conical 
conical 
Conical 

Minimum drag 

0.01 
.04 
.16 
.Ol 

The  data  for  model 7 is near field data because tm/Z' is approximately  unity.  The 
remaining  data is mid-field  data  because tm/2' is of the same  order  as unity. In all 
cases, the  agreement  between the trends  in  the  theory  and  data are correct.  The  agree- 
ment  in  absolute  level is fairly good. This is attributable  in  part  to  the  selection of the 
position  from which  the reference Mach wave leaves as 0.85 2 '. Models 2 and 3 are 
cones,  and  for  cones  the  near  field  sound wave shape is quite  different  from  the half N 
wave assumed  in the analysis.  For a cone  the  peak pressure  in the  near  field  occurs 
some  distance behind  the initial  shock, and  hence  the  local  shock  angle, p ,  and  hence 
tm would be expected  to  be  less  than would occur  for  an N wave.  The  comparison 
between  the  experimental  and  analytical results show  this  tendency. 

Figure 6(b) presents  the  dimensionless  maximum  static-pressure  rise  in  a  similar 
plot.  The  experimental  and  analytical  results  are  in  surprisingly good agreement.  The 
agreement is good even for  the cones  where as noted in  the  preceding  paragraph  the  peak 
pressure  occurs  some  distance  downstream of the  shock  wave,  and  the  estimation of the 
wave length is only fairly good. 

The  preceding  results  were  for  the  near and  mid-field.  The  analytical  expressions 
reduce  to the presently  accepted  analytical  form in the far field. 

It is concluded  that fo r  bodies of revolution  with a conical o r  convex  profile  that  the 
sound wave length  and  the  maximum  static-pressure rise can  be  approximated at all 
distances  from the body by the simple  closed  form  expression  resulting  from  the  present 
analysis. 

Example Flow Field Results 

A unique feature of the  present  analysis is that it determines  the  distribution  in  the 
flow of the  sound  wave drag  and  entropy  drag  components of the pressure  drag.  Also, 
all the  flow  field  perturbation  components  may  be  estimated.  Examples of such  results 
are presented  in  figures 7 and 8. For these  illustrative  calculations, it has  been as- 
sumed  that 
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(a) Sound wave length. 

(b)  Sound wave velocity  perturbations. 

I I I 

1 10 102 103 104 
Dimensionless  distance  from body, r p / l  

(c)  Entropy  velocity  perturbation. 

Figure 7. - FIOW field  about  axisyrnrnetric body wi th  body parameter 
(3KS/47d1" x A/Z2 = 0.02. 

i"". "- A - 0.02 
4Tr z 2  

These  results will be discussed  primarily  from  the  point of view of the  effect of distance 
from the  body. To obtain  the  total  effect of Mach number,  the  effect of Mach number on 
Ks, as illustrated  in  figure  5 (p. 18), would have  to be accounted for.  The  effect of Ks 
in  the far field is not large  because,  for  example, it occurs  to  the one quarter  power 
in the pressure rise (eq.  (35)). 

Figure 7(a) shows  that  the  sound wave length tm/Z , equation  (28), increases with 
distance  from the body, r2/Z ; and that  for a given  value of r2/Z , tm/Z increases with 
increasing Mach number. For the  sake only of selecting  some  numerical  values  for 
discussion, it is noted  that a supersonic  transport  may  cruise at Mach number 3.0, may 
have a half-fuselage  length, Z , of 150 feet  (45.7 m), and  may  fly at an  altitude of 
60 000 feet (18  210 m).  This would give a value of r2/Z of 400. At  this  value of r2/Z 
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of sound  wave  and  entropy  drag i n  flow field for axisymmetric body, with body parameter 

and at M = 3.0, 5 , / Z  has a value of 2.5 compared  with 1.0 at the  body, r2/Z = 0. For 
the present analysis to  apply for  a sonic boom analysis,  account would have  to  be  taken 
of the  density  variation  that exists in  the  Earth's  atmosphere  with  distance  from the body 
and, of course, of wing volume  and  lift  effects.  These effects are  discussed  in  refer-  
ences 11 and 12, for  example. 

The  value of - ( U / U ) ~ ~ ,  equation (30), a sound  wave  component of the  flow, is shown 
in  figure  7(b).  Recall  that p(v/U),, = - ( U / U ) ~ ~ ,  equation (31). These  values  decrease 
by orders  of magnitude  with  increasing  distance  and  also  decrease  with  increasing Mach 
number.  The  values of the  entropy  component of the  flow, (u/U),, equation (33), are 
shown  in  figure  7(c).  These  values  also  decrease by orders  of magnitude  with  increasing 
rZ/Z, but  the  effect of increasing Mach number  varies  with r2/Z. 

( U / U ) ~ ~ ;  for  example, at r2/Z = 400, (u/U), lom4, while ( u / U ) ~  seven  orders 
of magnitude smaller.  In spite of this, ue can  be of comparable  importance  to % in its 
contribution  to  the  drag at distances far from the  body because  the  mass flow parameter 
associated  with ue is p (U/U)7r(r2/Z)2 compared  with p(v/U)27r(r2/Z) associated  with 
uw, or about six orders  of magnitude greater  at r2/Z = 400. 

The  relative  contribution  to  the  drag of % and ue is indicated by the  fraction of 
the body pressure  drag that appears in the  form of sound  wave drag  and  entropy  drag, 
equations (32) and (34). This is shown in figure 8. Close  to  the  body, r2/Z M 1.0, most 
(about 85 percent at M = 3.0) of the body pressure  drag is in  the  form of sound  wave  drag. 
The  remaining drag appears in  the  form of entropy  drag.  At r2/Z = 400 and M = 3.0, 

The  values of (u/U), are many  orders of magnitude smaller  than  the  values of 
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however, Only 40 percent of the pressure drag appears in sound wave drag  form;  and  the 
remaining 60 percent in the  entropy  drag  form.  For a given  value of r2/Z the  fraction 
of the  pressure drag i n  sound  wave form  decreases  with  increasing Mach number.  With 
regard  to  the sonic  boom, recall that only  the  sound  wave form of the  drag  contributes to it. 

The continuous  degradation of the  pressure drag into  entropy drag with  increasing 
distance  from  the body appears explicitly in  the present analysis.  This  Same  process 
exists implicitly  when  Fredrichs'  hypothesis is made as is done in  Whitham's far field 
analysis,  reference 8. 

CONCLUDING REMARKS 

Linearized  flow  assumptions  and the conservation  equations of mass,  momentum, 
and  energy  were  used  to  estimate  the flow  field  about  an  axisymmetric body at zero  angle 
of attack which  produces a sound wave pressure trace. The  results  apply at all distances 
from  the body. 

The  analytical  results showed good agreement  with  experimental  results  for  cones 
and  axisymmetric  bodies  with  convex  profiles. 

The  present  analysis  shows  explicitly how the  entropy  increase  in  the flow  field 
shock  waves  contributes  to  the  attenuation of the  shock  wave initial static  pressure rise 
with  increasing  distance  from  the body. This effect occurs  implicitly  in  Whitham's far 
field  analysis which assumes  isentropic  flows with interposed  shock  waves. 

The  method of analysis  in its present  form  does not  give  the  detailed  effect of body 
profile  and the corresponding  details  in  the pressure signature  that  Whitham's  near 
field  approach  does.  However it should  contribute  to  the  understanding of the  flow 
phenomenon  involved  in  the relation between  shock  attenuation  with  distance  and  shock 
losses.  The  simplicity of the  present result will be a convenience for  estimation 
purposes. 

It is believed  that  the  present  approach  can be extended  to  include  the  effects of 
atmospheric  pressure  and  temperature  gradients  and  perhaps a wave-shape  that  varies 
with  distance  from  the  body.  This  may  contribute to achieving a simple  closed  form 
relation  for  estimating  airplane  sonic boom. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland,  Ohio,  July 30, 1968, 
126-15-02-02-22. 
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